

Beyond Gaussian Fluctuations in Galaxies and the CMB

Marc Kamionkowski (Caltech)

LBL, 10 March 2011

New CMB (and other) Tests of Inflation, Dark Energy, and other novel physics

Marc Kamionkowski

(Caltech)

Cosmological birefringence Statistical isotropy Power inhomogeneities

Berkeley, 20 September 2010

This talk:

Non-gaussianity from self-ordering scalar fields (w. Caldwell, Figueroa, arXiv:1003.0672)

Scale-dependent halo bias (w. Schmidt, 1008.0638)

Odd-parity bispectra (w. Souradeep, 1010.4304)

Statistics of CMB non-Gaussianity (w. Smith, Heavens, 1010.0251 and w. Smith, in preparation)

Particle-Astro Interface:

This talk:

Inflation/Early Universe

Who did the work

Tristan Smith

Robert Caldwell

Tarun Souradeep

Fabian Schmidt

Dani Figueroa

AT&T: 1965

COBE: 1991

BOOMERanG: 2000

WMAP: (2003-present)

Planck: Even better!! (launched May 2009)

...and beyond!!

Isotropy problem: Why is the Universe so smooth?

Inflation:

The mechanism: Vacuum energy associated with new ultra-high-energy physics (e.g., grand unification, strings, supersymmetry, extra dimensions....)

Inflation prediction #1: The Universe is flat

Cosmological geometry: The shape of spacetime General relativity: Matter warps spacetime

(Less matter)

(critical density)

(more matter)

The Geometry of the Universe

Warped spacetime acts as lens:

"flat"

"open" "closed"

(MK, Spergel, Sugiyama 1994)

Map of CMB (Boomerang/MAXIMA 2000)

Sizes of hot/cold spots⇒Universe is flat

Inflation prediction #2: Primordial density perturbations

Inflation predicts power spectrum

$$P(k) \equiv \left\langle \left(\frac{\delta \rho}{\rho}\right)_{\vec{k}}^2 \right\rangle \propto k^{n_s}$$

With

$$n_s = 1 - 2\epsilon + 6\eta$$

Recent experimental results:

$$n_s \simeq 0.95$$

$$n_s \neq 1$$

At ~3-sigma level

WHAT NEXT??

What is new physics responsible for inflation?

What is $V(\phi)$??

STOCHASTIC GRAVITATIONAL WAVE BACKGROUND with amplitude $\propto V^{1/2}$

Detection of gravitational waves with CMB polarization

Temperature map: $T(\hat{n})$ / "B modes" Polarization Map: $\vec{P}(\hat{n}) = \vec{
abla} A + \vec{
abla} imes \vec{B}$

Density perturbations have no handedness so they cannot produce a polarization with a curl Gravitational waves do have a handedness, so they can (and do) produce a curl

(MK, Kosowsky, Stebbins 1996; Seljak, Zaldarriaga 1996)

E modes

一六

No handedness Bmodes

35

礼

Handalness

No Gravity Waves

Gravity Waves

And one final prediction: Gaussianity

Gravitational potential (e.g., Verde, Wang, Heavens, MK, 2000)

$$\Phi = \phi + f_{\rm NL} \phi^2$$

with $f_{\rm NI}$ < 1 (e.g., Wang & MK, 2000)

Gaussian field

Fractional departure from Gaussianity:

$$\sim f_{\rm NL} \phi_{\rm rms} \sim 10^{-3} f_{\rm NL}$$

 $f_{\rm NL}$ ~5 detectable by Planck

Current constraints (WMAP5,SDSS): $|f_{nl}| < 100$

Inflation doing well

- Geometry
- n_s~1
- Gaussian

But standard single-field slow-roll inflation is a toy model! It cannot be the whole story!

- Possible embeddings in new UHE physics give rise to, e.g.,
 - Funny kinetic terms ("DBI inflation")
 - Multiple fields (e.g., curvaton)
 - Wiggles/bumps/breaks in the inflaton potential (BSI models or axion monodromy)
 - Topological-defect production

-ETC

Next steps (in progress)

- $n_s \neq 1$?
- Gravitational waves
- non-Gaussianity

Beyond-SFSR models "predict" ("allow for"?)

- Departures from standard expectations for n_s, gravitational waves, adiabaticity.....
- A lot more (and more flavors of) non-Gaussianity

How do we tell if primordial perturbations were Gaussian?? Some earlier work

With abundances/properties of rare objects: e.g., clusters (e.g., Robinson, Gawiser & Silk 2000; Verde, MK, Mohr, Benson 2001) or high redshift galaxies (e.g., Verde, Jimenez, Matarrese, MK 2001) or voids (MK, Verde, Jimenez 2009)

Rare objects form here

Non-Gaussianity beyond the PDF: The Bispectrum

- The gravitational potential $\Phi(\vec{x})$ in early Universe has Fourier components $\Phi_{\vec{k}}$.
- Power spectrum is $P_{\Phi}(k) = \left< |\Phi_{\vec{k}}|^2 \right>$
- Different modes have zero covariance:

$$\left\langle \Phi_{\vec{k}_1} \Phi_{\vec{k}_2} \right\rangle = 0 \quad \text{for} \quad \vec{k}_1 \neq \vec{k}_2$$

Bispectrum is

$$\left\langle \Phi_{\vec{k}_1} \Phi_{\vec{k}_2} \Phi_{\vec{k}_3} \right\rangle = B(k_1, k_2, k_3) \delta_{\vec{k}_1 + \vec{k}_2 + \vec{k}_3, \vec{0}}$$

E.g.,

- Gaussian fluctuations: B=0
- Local model, $\Phi = \phi + f_{nl} \left(\phi^2 \langle \phi^2 \rangle\right)$ has bispectrum

 $B(k_1, k_2, k_3) = 2f_{nl} \left[P_{\Phi}(k_1) P_{\Phi}(k_2) + P_{\Phi}(k_2) P_{\Phi}(k_3) + P_{\Phi}(k_1) P_{\Phi}(k_3) \right]$ or for scale-invariant spectrum,

$$B(k_1, k_2, k_3) = 2f_{nl} \left[\frac{1}{k_1^2 k_2^2} + \frac{1}{k_2^2 k_3^2} + \frac{1}{k_1^2 k_3^2} \right]$$

Bispectrum is function of triangle shape:

For local model,

But there are other possibilities; e.g., "equilateral" model (from DBI inflation)

Or the "orthogonal" model (from some single-field funny-vacuum theories

Self-Ordering Scalar Fields: Another possibility for new beyond-SFSR physics (Figueroa, Caldwell, MK 2010)

Consider N-component scalar field,

$$\vec{\Phi} = (\phi^1, \phi^2, \cdots, \phi^N)$$

with Lagrangian
$$\mathcal{L}=\frac{1}{2}(\partial_{\mu}\vec{\Phi})\cdot(\partial^{\mu}\vec{\Phi})-V(|\vec{\Phi}|)$$
 with O(N) symmetry and potenial

with O(N) symmetry and potenial

$$V(\vec{\Phi}) \propto (|\Phi|^2 - v^2)^2$$

- At low T (after SSB), $|\Phi| = v$, but $\bar{\Phi}$ points in different direction in vacuum manifold S^{N-1} in each Hubble volume
- As different regions come in causal contact, find energy densities $|\nabla \vec{\Phi}|^2/2 \sim H^2 v^2$ or fractional density perturbations

$$\frac{\delta \rho}{\rho} \sim \frac{H^2 v^2}{H^2 M_{Pl}^2} \sim \left(\frac{v}{M_{Pl}}\right)^2 \sim 10^{-6} \left(\frac{v}{10^{16} \,\text{GeV}}\right)^2$$

- Perturbations are scale-invariant
- Are ~isocurvature (but incoherent), not adiabatic
- Are highly non-Gaussian: in large-N limit, φⁱ are ~Gaussian, but δρ ~ Φ² ~ (Gaussian)²
- Observationally: Cannot be the primordial perturbations, but may account for ~10% of primordial perturbations
- ~10% contribution to primordial perturbations if GUT scale!

Analytical calculation of bispectrum for this model (Figueroa, Caldwell, MK, 2010, extending work of Jaffe 1994)

First: <10% contribution to measured C_l s:

$$\frac{v}{N^{1/4}} \lesssim \frac{M_{Pl}}{2000}$$

Bispectrum is

$$B(k_1, k_2, k_3) = \left(\frac{2\pi}{5} \frac{v}{M_{Pl}} \frac{\eta^2}{A}\right)^3 \frac{1}{N^2} g_3(k_1, k_2, k_3)$$

With (Jaffe 1994)

$$g_3(\mathbf{v}) = \int d^3 u \, \mathbf{u} \cdot \hat{\mathbf{k}} \, I(|\hat{\mathbf{k}} - \mathbf{u}|, u) \bigg[(1 + 2\mathbf{v} \cdot \hat{\mathbf{k}} - 2\mathbf{u} \cdot \hat{\mathbf{k}} + v^2 - 2\mathbf{u} \cdot \mathbf{v}) (2\mathbf{u} \cdot \mathbf{v} - 2\mathbf{v} \cdot \hat{\mathbf{k}} - v^2) \\ \times I(|\hat{\mathbf{k}} + \mathbf{v} - \mathbf{u}|, |\mathbf{u} - \hat{\mathbf{k}}|) I(u, |\hat{\mathbf{k}} + \mathbf{v} - \mathbf{u}|) \\ + (v^2 + 2\mathbf{u} \cdot \mathbf{v}) (2\mathbf{u} \cdot \hat{\mathbf{k}} + 2\mathbf{u} \cdot \mathbf{v} + v^2 - 1) I(u, |\mathbf{u} + \mathbf{v}|) I(|\mathbf{u} - \hat{\mathbf{k}}|, |\mathbf{v} + \mathbf{u}|) \bigg],$$

which we re-write

$$g_3(k_1, k_2, k_3) \equiv \int \frac{d^3 v}{(2\pi)^3} H(\mathbf{u} + \mathbf{v}, \mathbf{v}) H(\mathbf{v}, \hat{\mathbf{z}} - \mathbf{v})$$
$$\times H(\hat{\mathbf{z}} - \mathbf{v}, \mathbf{u} + \mathbf{v}),$$

equilateral

For those who want to do analyses:

$$g_3(k_1, k_2, k_3) = -\frac{A^3}{143} \left(262 - 127 \frac{k_2}{k_1} \right) \times \left[947 \frac{k_3}{k_1} - 1770 \left(\frac{k_3}{k_1} \right)^2 + 893 \left(\frac{k_3}{k_1} \right)^3 \right],$$

Quantitatively:

Current NG limits are not constraining, but effects should be detectable with Planck if *v* near current upper limits

Halo Clustering: a powerful new probe of non-Gaussianity (e.g., Dalal, Dore, Huterer, Shirokov,

2007; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Verde, Matarrese 2008; Schmidt, MK, 2010)

Large Scale Structure

Observe a LSS tracer

(dramatization)

- Key theoretical problem:
 - how to map initial linear fluctuations to observed non-linear density field of tracer (on large scales)

In equations: Bias for long-wavelength fluctuation of wavenumber *k*:

$$b_{L}(M, z; k) \equiv \frac{\delta \tilde{n}(\vec{k})/n}{\delta \rho/\rho} = \frac{d \ln \tilde{n}(\vec{k})}{d\tilde{\delta}_{l}(\vec{k})}$$

$$= \left(\frac{\partial \ln \tilde{n}(\vec{k})}{\partial \tilde{\delta}_{l}(\vec{k})}\right) + \sum_{\vec{k}_{s}} \frac{\partial \ln \tilde{n}(\vec{k})}{\partial P(k_{s})} \frac{\partial P(k_{s})}{\partial \tilde{\delta}_{l}(\vec{k})}$$

Usual Gaussian bias

Non-Gaussian contribution

Use Peak-Background Split:

Separate density field into short-wavelength modes (<Mpc; halos formed at peaks) and long-wavelength modes (>Mpc; determine clustering)

Halo abundance is

$$n = n\left(M, z; \bar{\rho}\left[1 + \delta_l(\vec{x})\right], P(k_s, \delta_l(\vec{x}))\right)$$

Non-Gaussian contribution arises from coupling of long- and short-wavelength modes:

$$\delta_s(\vec{x}) = \delta_{g,s}(\vec{x}) + 2f_{\rm nl}\phi_{g,l}(\vec{x})\delta_{g,s}(\vec{x})$$

so local power spectrum $P(k_s)$ now depends on long-wavelength perturbation Since $\nabla^2\phi=4\pi G\rho$, we have $\phi_{\vec k}\propto \delta_{\vec k}/k^2$ Leads to bias $b_L^{\rm ng}\propto k^{-2}$; null search with SDSS constrains $|f_{\rm nl}|\lesssim 100$ (Slosar et al. 2008)

More general bispectra

Curvaton models have,

$$\Phi = \phi + f_{\rm nl}\phi^2$$

leading to bispectrum

$$\left\langle \Phi(\vec{k}_1)\Phi(\vec{k}_2)\Phi(\vec{k}_3) \right\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B(k_1, k_2, k_3)$$

with

$$B(k_1, k_2, k_3) = 2f_{\text{nl}} \left[P(k_1)P(k_2) + P(k_2)P(k_3) + P(k_1)P(k_3) \right]$$

But other more complicated inflationary theories (e.g., with non-standard kinetic terms) may produce other bispectra

Self-ordering scalar fields

Schmidt-MK: Generalize for other (non-local-model) bispectra

Scale-dependent bias depends only on squeezed limit of bispectrum

No scale-dependent bias for equilateral/SOSF

 $b^{\sim} 1/k$ for orthogonal model

Technical innovation: Write

$$\hat{\phi}(\vec{x}) = \phi(\vec{x}) + f_{\rm NL} \int d^3 \vec{y} \, d^3 \vec{z} \, W(\vec{y} - \vec{x}, \vec{z} - \vec{x}) \phi(\vec{y}) \phi(\vec{z})$$

$$\hat{\tilde{\phi}}(\vec{k}) = \tilde{\phi}(\vec{k}) + f_{\rm NL} \int \frac{d^3 \vec{k}_1}{(2\pi)^3} \, \widetilde{W}(\vec{k}_1, \vec{k} - \vec{k}_1) \tilde{\phi}(\vec{k}_1) \tilde{\phi}(\vec{k} - \vec{k}_1)$$

$$\widetilde{W}(k_1, k_2, k_3) = \frac{1}{2f_{\mathrm{NL}}} \frac{B_{\phi}(k_1, k_2, k_3)}{P_{\phi 1} P_{\phi 2} + P_{\phi 1} P_{\phi 3} + P_{\phi 2} P_{\phi 3}}$$

Odd-Parity CMB Bispectra (with T. Souradeep 2010)

On full sky

$$T(\hat{n}) \longrightarrow a_{lm} = \int Y_{lm}^*(\hat{n}) T(\hat{n})$$

Bispectrum is then $B(l_1,l_2,l_3) \propto \sum_{\{lm\}} \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} a_{l_1m_1} a_{l_2m_2} a_{l_3m_3}$

for $\{lm\}$ that satisfy triangle relations and also $l_1+l_2+l_3=$ even.

Restriction $l_1+l_2+l_3$ =even assumes CMB does not have a preferred parity. But can construct bispectrum that probes parity-breaking 3-pt correlations with $l_1+l_2+l_3$ =odd. Statistic probes difference between correlations of triangles with opposite parity

Exotic physics to produce such correlations would have to be *very* exotic.

Measurement can be used as null test (a parity "jackknife" test) or consistency check for complicated analyses.

Statistics of f_{nl} estimators (w. T. Smith)

Suppose CMB experiment measures f_{nl} =30 with standard error σ =10. What does this mean?

If PDF for f_{nl} estimators is Gaussian, then is 3σ departure null hypothesis f_{nl} =0.

Or if measurement is f_{nl} =0 with standard error σ =10 and errors are Gaussian, then is inconsistent at 3σ level with f_{nl} =30.

But are the errors Gaussian?

f_{nl} estimator composed of sums of triples of Gaussian random variables:

$$\widehat{f_{\rm nl}} \equiv \sigma_{f_{\rm nl}}^2 \sum_{\vec{l_1} + \vec{l_2} + \vec{l_3} = 0} \frac{T_{\vec{l_1}} T_{\vec{l_2}} T_{\vec{l_3}} B(l_1, l_2, l_3) / f_{\rm nl}}{6\Omega^2 C_{l_1} C_{l_2} C_{l_3}}$$

Contains $^{\sim}N^2 >> N$ (number data points) triples, so central-limit theorem does not apply, and PDF for $\widehat{f_{nl}}$ not necessarily Gaussian

Monte Carlo results: PDF *is* ~Gaussian if f_{nl} =0

But not if $f_{nl} \neq 0$.

3σ departure from null hypothesis *does* represent 99.7% CL departure

But more care must be taken in ruling out nonzero $f_{\rm nl}$ from null result; and null result actually a bit more constraining than assumption of Gaussian PDF would suggest

Beyond the bispectrum: The trispectrum

$$\left\langle \Phi_{\vec{k}_1} \Phi_{\vec{k}_2} \Phi_{\vec{k}_3} \Phi_{\vec{k}_4} \right\rangle = \mathcal{T}(\vec{k}_1, \vec{k}_2, \vec{k}_3, \vec{k}_4) \delta_{\vec{k}_1 + \vec{k}_2 + \vec{k}_3 + \vec{k}_4, \vec{0}}$$

e.g., MK, Smith, Heavens 2011